A, Bundy
G. Luger
M. Stone
R. Welham

1
MECHO ; YEAR ONE

This is a progress report on the MECHO project originally
announced in D.A.I. Working Paper No. 8, Bundy, Luger and Stone,
1975. The project is to write a computer program which can
solve mechanics problems stated in English. This is motivated
by a desire to understand how it is possible to form a mathe~
matical model of a real world situation. A problem, typical
of those solved by our program, is given and the natural lan-
guage analysis, equation extraction and the solution of the
problem discussed.

O MOTIVATION

This work is motivated by a desire to understand how it is
possible to change the representation of a problem in order to
make its solution easier. In particular how it is possible
to go from the natural language statement of a problem to a
mathematical model from which the problem can be solved.
Mechanics seems a suitable area to study this because it pro-
vides a rich source of problems which are stated in English -
using a limited domain of discourse and which are hard enough
to be interesting without being intractable. ‘
Secondary motives for studying mechanics problems are that
they (a) provide an opportunity to study how semantic knowledge
(of physics) can be used to guide the search for the solution
to a problem in pure mathematics (equation solving) and (b)
there may also be educational spinoff from our formalization
of the intuitive physical knowledge required in problem solving.
This knowledge is not normally stated in text books, but is ‘
essential for solving the problem, and is often overlocked by
the unsuccessful problem solver.

1 METHODOLOGY

our initial approach to solving mechanics problems has been to

1 As all the best projects seem to need a silly name
(HACKER, DENDRAL, PARRY ... ) we have called ours MECHO, short
for MECHanics Q;acle.

9l



divide the task into parts and to tackle each of the problems
relatively independently. The reasons for this approach are
explained in Bundy, Luger and Stone (1975). Accordingly we
have written programs to ‘

(a) Translate the syntactic parse of a problem statement into
a surface-level meaning representation,

(b) Extract equations from a deep level meaning representat-
ion,

(c) Solve the resulting simultaneous equations.

This preliminary work has enabled us to build up our de-
scriptive theory. That is, we are developing an ontology for
each of the meaning representations and are‘getting a better
idea of the kind of inferences required to go from one repre-
sentation to another. We also have a better understanding of
how the inferencing should be controlled (i.e., about the
search strategy).

The second section is divided into three parts. These
describe the natural language analysis (A), equation extract-
ion using the "Marples Algorithm" (B) and the solving of the
equations (C). The third section discusses the merits of

PROLOG in this project.

2 A MECHANICS PROBLEM AND ITS SOLUTION

The following mechanics problem is used throughout this paper
to illustrate the action of our programs:-

The distance between two stations is 2000 yards. An
electric train starts from rest at one station with a

uniform acceleration of Al ft/secz; it comes to rest
at the other station with a uniform retardation of A2

ft/secz. The speed for the intermediate portion of
the journey is constant, Find the constant velocity if
the journey is to be completed in three minutes.

" A. Natural Language Analysis

The existing natural language program is written in POP-2 and
consists mainly of a hierarchical (Bundy & Stone, 1975) data-
base and a set of functions that make use of the database.
The database is very important as it contains the information
used to guide the parse, At the moment the program only
partially performs the task outlined below.

We depend on semantics to dis-ambiguate any parsing problems,
and we presently concentrate on developing mechanisms: to deal
with semantics rather than syntax. The program-as- it stands
accepts as input an embedded list structure that is similar to
the output from a simple syntactic parser.

95




Syntactic Parse Program Input

// (DISTANCE (STATIONL
\\\\\\\\VP STATION2)

N\

v NP (YDS 2000) )
ART tz;;\ﬁn Js ADJ\\NP
gég_ BETWEEN AEJ 2000
DISTANCE TWO ¥YDS
STATIONS

The basic strategy is straightforward. Each clause is ex-
amined sequentially. The key word in each phrase (noun for
noun phrase, verb for verb phrase) is looked at first. These
words, generally representing entities or relationships, will
each have at least one major entry in the database. This
entry contains information such as which entities can be ob-
jects of relationships and which have certain attributes or
entities associated with them. For example, acceleration is
a quantity, and quantities are known to have a measure, a unit,
and a direction, In the case of an entity, the words on the
same phrase level are checked against the database to see how
they can be used to expand the definition of the entity. For
example, in the clause

((TRAIN ELECTRIC) (STARTS(REST) (STATION ONE))2
(ACCELERATION UNIFORM FT/SEC ALl)),

ACCELERATION as a quantity is first recognized as an attribute
of a particle. UNIFORM is.,defined as "CONSTANT", an attribute
of a gquantity; and FT/SEC” Al is recognized as a particular
instance of a quantity. When it was recognized that a part-
icle (the TRAIN) had been put into motion, it was noted that
there should be a corresponding acceleration. If one assumes
that Al is the appropriate acceleration,_the following assert-
ions can be made:

ACCEL (TRAIN,AQl,PERIOD1)
MEASURE (AQl,Al)2

UNIT (AQl,FT/SEC™)
CONSTANT (AQL)

(PERIOD1 refers to a period of time at the start of which the
motion of the train begins)

For a relationship, any previously mentioned entities are
examined to see if they qualify as arguments. As the rest of
the clause is parsed, new entities are also tested for suita-
bility as arguments.

96




In the third clause: ((IT) (COMES-TO-REST (STATION OTHER)
5 )
(RETARDATION UNIFORM (FT/SEC™ A2)))),

"IT" is recognized as a pronoun referring to a solid object.
"COME-TO-REST" is a verb that indicates the completion of a
period of motion of a solid object. This would allow the fol-
lowing assertion:

MOTION (IT,PERIODZ2).

But before making this assertion, the data structure is search-
ed for a referent for "IT". The "TRAIN" is the only solid
object presently described as being in motion. "IT" and
"TRAIN" can be equated, and the following assertion made:

MOTION (TRAIN, PERIODZ)

After the first pass a focal point for the problem is estab-
lished, in this case the journey of the train. Any isolated
pieces of the data structure are examined in.a second pass to
see if they can be linked to this overall structure. The
first clause implied these assertions:

PATH (D@,STATIONL,STATION2)
MEASURE (D@, 203@)
UNIT (D@,YDS)

These assertions were not directly related to anything. On
the second pass STATION1 and STATION2 are seen as endpoints of
PATHp, the path taken by the train, and

EQUAL (PATH@,D@) can be asserted.

The structure is carefully checked for contradictions, and
eventually will be passed on to the equation extractor in the
form of PROLOG clauses:

JOURNEY (TRAIN,EPISODE,PATH®)
SEGMENT (EPISODE,PERIOD1.PERIOD3, PERIOD2 NIL)
INITIAL (PERIOD1,DEPARTURE)
INITIAL (PERIOD3,CHANGEL)
INITIAL (PERIODZ2,CHANGE2)
FINAL (PERIOD2,ARRIVAL)
etc.

B. The Marples Algoxrithm

All programs for solving applied mathematics problems employ
some device for extracting equations from a semantic database.
Often this is very simple as in Charniak's program which ex-
tracted all possible equations. It is possible to do better
than this by avoiding irrelevant equations. The best explan-
ation we have seen of how to do this is Marples' description
(Marples 1974) of the behaviour of engineering students. Our
algorithm is based on his description.

971




Our algorithm distinguishes between symbolic quantifiers for
which solutions are required (sought unknowns such as the "con-
stant velocity" in the example above) and those which can leg-
itimately appear in such solutions (givens such as accelera--
tions Al and A2). The first sought unknown is removed from the
list of sought unknowns and an equation is formed which con-
tains it. In general this can be done in several ways. We
prefer equations which involve only sought unknowns or givens
and do not introduce any further intermediate unknowns. Un-
fortunately we may be forced to introduce some intermediate un-
knowns in which case these are added to the end of the list of
sought unknowns. The sought unknown for which we have just
solved is added to the list of givens and a record of the
equation we have just formed is remembered. The process is
repeated recursively until there are no further sought unknowns
to be solved for. The equations are then subjected to an "in-
dependence" check, to make sure the same equation does not ap-
pear twice and that only two (of a possible five) constant ac-
celeration equations are used.

Equations are actually formed by the PROLOG procedure
"MAKEEQN", each clause of which corresponds to a certain phys-
ical formula. For example, consider the clause for constant
acceleration, v=uta.t (present velocity equals the initial vel-
ocity plus the acceleration multiplied by the time).

+MAKEEQN (*V = *U + *A. *7, (CONSTACCEL.1) . (*P. *OBJ) ,*US)

- ACCEL (*OBJ, *A, *P) - UNUSED (CONSTACCEL. 1,
*p, *OBJ, *US)
- ISVINVAR (*A) - DIFF (*A, *ZERO)
- PERIOD (*P) —~ DURATION (*P, *T)
- INITVEL (*OBJ, *U, *P) - PINVEL (*OBJ, *V, *P).
"MAKEEQN" is the name of the procedure; ¥y = %9, . . . , *US

is the calling pattexn. The rest of the clause is the body,
where - ACCEL (*OBJ, *A, *P) etc. are sub-routine calls.
"CONSTACCEL.1" is the name we give to the resulting equation.
*US, the list of equations already produced, is the only input
to the procedure. These are both used by the independence
checking procedure "UNUSED".

The clause can be read as follows:

"We can make an equation V = U+A.T provided: A is the ac-
celeration of some object, OBJ, during some period of time, P;
CONSTACCEL.l in situation P.OBJ is independent of all equat-
iong used so far; vector A is constant; A is different from
ZERO; P is a period; T is the duration of P; U is the init-
ial velocity of OBJ in period P and V is the final velocity."

These facts are usually checked in the semantic database,
although the last two might involve some trivial inferences.
The equations extracted from the example considered above are:

98




EQUATIONS - EXTRACTED

V = ZERO + AQl. TIl &

Tl = TI1 + (TI2 + (TI3 + @)) &
vV . TI2 =D2 &

ZERO = V + AQ3. TI3 &

D@ = D1 + (D2 + (D3 + @)) &

Dl =%ZERO . TIL + 1 / 2 .AQl. TIL : 2 &
D3 =V .TI3+1 /2 .AQ3 ., TI3 : 2 &
TRUE

(':' is exponentiation)

The units (of velocity, time, etc.) are then standardized and
the equations are simplified. The following PROLOG clause,
including the list of sought unknowns, is sent to the equation
solver:

-=SOLVE (

Z=Al.T1l

3=Tl.6@:-1+T2.6@: -1+T3.6@:-1
Z.T2=X2

@=Z+n2.T3

6PPP=X1+X2+X3
X1=2:-1.A1.T1:2
X3=%.T3+2:-1.A2.73:2

TRUE,
Z.71.T2.73.X2.X1,.X3.NIL).

2 Qo R0 Qo QO o

The string at the end of the seven equations is the list of
"sought unknowns".

C. The Equation Solver

This program is capable of symbolically solving sets of sim-
ultaneous algebraic equations for a given list of unknowns.
The first step is to select one of the equations and one of
the unknowns and to solve the equation for the unknown. The
solution is then substituted in the remaining equations and
the process repeated until the last equation is solved for the
last unknown. At the moment the equation to be solved and the
unknown to be solved for are selected by stepping sequentially
through the lists of each until a pair is found for which the
unknown is solvable by the program. The order in which the
equations were extracted (previous section), determines the
order within the lists. Later it is hoped to make this pro-
cess more intelligent by having the program formulate an over-
all plan or optimum order for the solution of these equations.
The bulk of the program is concerned with solving one
equation for one unknown. The strategy consists of success-
ively applying members of a set of rewrite rules to the equat-
ion. At present there are 61 such rules in the program, but

99




since the program is written in PROLOG, an approximation to
predicate logic, additional rewrite rules may be added at any
time. The rules are not applied at random and the computation
is guided by indexing them into sets labelled as useful for a
particular strategy. For example, a strategy known as isola-
tion is applied to an equation as soon as there is just one
occurrence of the unknown in that equation. The idea behind
this strategy is to change the equation to one of the form X=T
where X is the unknown and T is a term not containing the un-
known. Only the rewrite rules marked "useful to isolation”
are invoked by isolation. A typical rewrite rule useful for
isolation is "Replace log(U)=V by U=e:V".

Other strategies used by a super-strategy called the basic
method are known as collection and attraction, Collection has
the job of collecting together occurrences of the unknown and
thus reducing the number of occurrences of the unknown in the
equation. Thus a typical rewrite rule labelled as useful for
collection is "replace 2.sin U.cosU by sin 20",

Attraction brings occurrences of the unknown "closer to-
gether", thus preparing the way for collection, Typically, to
attract U and V in the expression U.W+V.W we use the rewrite
rule "replace U.W+V.W by (U+V).W".

The basic method implemented in the program tries to apply
the strategies of isolation, collection and attraction, re-
cursively. In addition to the basic method, the program has
the capability to recognize certain special classes of equations
such as linear or guadratic, and can also make a change of un-
known., Thus when solving the equation a(sin x):2 + bsinx +c
= Q for x the program first substitutes y for sinx and then
recognizes that the resulting equation a.y:2+by+c = O is a
quadratic in y.

Technical features of the program include a pattern matcher '
which knows about the commutativity of addition and multiplic-
ation,and a package for regarding terms dominated by addition
or multiplication function symbols as "bags".

3 EXPERIENCE WITH PROLOG

In most of our mechanics work to date we have used the experi-
mental programming language PROLOG, first developed at
Marseille (Roussel, 1975), and currently being improved at
Edinburgh (Warren; 1975, 1976). We have written two programs
in PROLOG and are in a position to draw some conclusions based
on our experiences.

We were very pleased with both the expressive power and
speed of PROLOG. It offered all the normal facilities of
functional language like LISP or POP-2, with no significant
loss of speed. The provision of pattern directed invocation
and non-determinism resulted in smaller, more transparent sub-

100




routines in our programming and a consequent reduction in pro-
gramming effort. The search mechanism was faster than any-
thing we could have written in a short time. We found PROLOG
very easy to learn.

The biggest drawback was the space requirements. At the
present time PROLOG is available at the University of Edinburgh
in two sizes, 50K and 75K. The 75K PROLOG can only be used in
unsocial hours. Earlier versions of our programs exhausted
the 50K PROLOG. The latest versions now exhaust 75K. Because
the PROLOG default is to be prepared to backtrack to every
choice point unless specifically told not to, it uses a lot of
space at run time recording these choice points. These choice
points are kepteven if PROLOG has been told not to backtrack to
them., Warren plans to correct this fault (Warren, 1976).

The second major drawback is that the debugging aids are
primitive, especially in the early version of PROLOG (SVI)
which we are using. Warren has now issued an improved ver-
sion (SVW) which, together with some further planned improve-
ments (Warren, 1976) seems to meet most of our criticisms. In
general, we feel that PROLOG is an exciting new language, fully
justifying further development to make it a viable alternative
to other A.I. languages.

4 SUMMARY AND CONCLUSIONS

The achievements of the MECHO project so far include three
separate programs that respectively:

1) partially implement the task outlined in the natural
language section,

2) implement the Marples algorithm for the extraction and
independence checking of equations and the conversion of
these into a uniform set of units, and

v3) implement the "basic method" (Bundy, 1975) for success-
fully solving sequences of simultaneous equations.

The most important tasks for the future are concerned with

providing intelligent links between these programs. The first
desirable link would be between a syntactic parser and the
existing natural language programs. For instance, contextual

information could be used intelligently to determine which of
several entries for one word would be the most appropriate in
the parse. The final goal would be to have one program that
performed the "syntactic" and "semantic" parsing simultaneously,
exchanging information between the two. ‘

The gap between the data structure obtainable from the
natural language input and the deep level database necessary
for extracting equations will eventually be bridged by in-
ferences invoked at this equation extracting stage. This will

101




:
-
.

inevitably slow down the Marples algorithm. This situation
could be improved by employing heuristics designed to reduce
the time spent forming irrelevant equations. One possible
heuristic might be to divide problems into types corresponding
to the chapter headings in applied mathematics textbooks.
Associated with each problem type would be an ordered list of
equation names. If the problem type could be identified by
contextual cues the associated equations would be formed first,

Another line of improvement would be to search for optimal-
ity as well as relevancy and irredundancy in the equations ex-
tracted. For instance, we could prefer equations which intro-
duced the smallest number of intermediate unknowns. '

Finally, there are further questions concerning the ability
of PROLOG in the MECHO Project that can only be answered in
light of the further development of the storage and debugging
features of the language (Warren, 1976).

REFERENCES

Bundy, A., 1975, "Analysing Mathematical Proofs (or reading
* " between the lines)", Proceedings of IJCAI4, Geoxrgia,
Cambridge, MIT-AI press.

Bundy, A., Luger, G. and Stone, M., 1975. "A Program to
Solve Mechanics Problems Stated in English", Department of
Artificial Intelligence Working Paper 8, University of
Edinburgh.

Bundy, A. & Stone, M., 1975. "A Note on McDermott's Symbol
Mapping Problem", SIGART Newsletter 53, 9-10.

Charniak, E., 1969, "Computer Solution of Calculus Word
Problems", pp 303-316, Proceedings of IJCAIl, eds. Walker,
D.E. and Norton, L.M. Washington, D.C.

Marples, D.L., 1974. "Argument and Technique in the solution
of Problems in Mechanics and Electricity", CUED/C~Eduec/TRI,
Dept. of Engineering Memo, University of Cambridge, England.

Roussel, P., 1975. "PROLOG: Manuel de Reference et d4'Util-
isation", Groupe d'IA, Marseille-Luminy, September, 1975.

Warren, D., 1975. "Epilog": Users' Guide to DEC 10 PROLOG
(Internal Memo, Department of Artificial Intelligence,
University of Edinburgh).

Warren, D., 1976. Proposal to Reduce PROLOG Storage Require-
ments (Internal Note, Department of Artificial Intelli-
gence, University of Edinbuxgh) .

ACKNOWLEDGEMENTS

We would like to express our gratitude to our colleagues in the

102




Department of Artificial Intelligence at Edinburgh for their
help and encouragement, especially David Warren, for making
PROLOG available and advising us on how to use it. This re-
search was funded by SRC Grant B:RG:9449.3 and by an SRC re-
search studentship awarded to Bob Welham.

103




